EPMA Laboratory

five different element maps of zoned garnet

Rice University Electron Microprobe Laboratory is equipped with the state-of-the-art JEOL JXA 8530F Hyperprobe, a field emission Electron Probe MicroAnalyzer (EPMA).

Laboratory manager: Gelu Costin

Keith-Wiess Geological Laboratory, Rooms 329-330A

The EPMA facility is open to users from all departments of Rice University, as well as to external academic visitors, non-profit organizations, government agencies, and local and national businesses.

Check availability

EPMA remote operation: Send your samples to us and do your analyses from the comfort of your home*.

*Contact Gabi at g.costin@rice.edu for information and instructions.


Electron Probe Microanalyzer and workstationElectron microprobe analysis provides precise quantitative chemical analysis of elements in very small volumes (<1 to 10 μm3 or more) of solid inorganic specimens.

The capabilities include:

  • Full quantitative analysis. All detectable elements (from Be to U) are quantified from a "spot" size (10-80 nm) to 1μm probe diameter or larger (depending on the application and material). Detection limits range 5-100 ppm, depending on the element and settings. High analytical resolution at a low accelerating voltage (2-10 kV), where micron-scale particles can be analyzed.
  • Rapid qualitative analysis, in EDS or WDS mode and phase identification
  • Line analyses (rapid compositional profiles)
  • Cathodoluminescence (CL) imaging; Panchromatic Cathodoluminescence Detector is integrated within the EPMA software and can acquire individual, high-resolution CL images (grayscale or fake colors), or can be used synchronously with the WDS mapping.
  • High-resolution chemical mapping of specimens on scales from <100 nm to ca 8 cm, quantitative element maps, phase map analysis
  • Imaging specimens at a micro- and nano-scale scale using backscattered electron (BSE) and secondary electron (SE) signal
  • Remote access and operation of EPMA-contact Gabi at g.costin@rice.edu for details on booking, sample drop off, sample delivery, remote operation instructions)

EPMA montage image element maps of zoned plagioclase


About the lab: EPMA configuration and capabilities

Booking EPMA instrument time

Sample requirements

Policies

Rates and payment

About the EPMA method

FAQ – EPMA

Contact

Dr. Gelu (Gabi) Costin
EPMA Lab Manager
Department of Earth Science
Rice University
6100 Main Street, Keith-Wiess Geological Laboratory, MS-126
Houston, TX, 77005

e-mail: g.costin@rice.edu Phone: Office: 713 348 2054


List of publications with data acquired at Rice University, EPMA laboratory

EPMA data types

Pramanik, A., Mahapatra, P. L., Tromer, R., Xu, J., Costin, G., Li, C., Saju, S., Alhashim, S., Pandey, K., Srivastava, A., Vajtai, R., Galvao, D. S., Tiwary, C. S., & Ajayan, P. M. (2024). Biotene: Earth-Abundant 2D Material as Sustainable Anode for Li/Na-Ion Battery. ACS Applied Materials & Interfaces. https://doi.org/10.1021/acsami.3c15664

Mallis, J. D., Zemlicka, G., Antonijevic, S. K., Lapen, T. J., Costin, G., & Campbell, T. (2023). U-Pb geochronology and petrography of Neoproterozoic to early Cambrian volcanic rocks in basement crustal terranes beneath the deep-water Gulf of Mexico. Geosphere. https://doi.org/10.1130/GES02687.1

Chakraborty, T., Büttner, S. H., Costin, G., & Kankuzi, C. F. (2023). The petrogenesis of highly fractionated gem-bearing pegmatites of Malawi: evidence from mica and tourmaline chemistry and finite step trace element modelling. Mineralium Deposita. https://doi.org/10.1007/s00126-023-01236-1

Brovchenko, V.D., Kirillina, I.A., Yudovskaya, M.A., Costin, G. et al. (2023). Sources of Cuprous Sulfide Mineralization and High-Ni Olivine of the Rudnaya Dyke (Imangda Cluster, Norilsk region): Based on Compositional, Isotope and Model Data. Petrology 31, 624–647. https://doi.org/10.1134/S086959112306005X

Mahapatra, P. L., Campos de Oliveira, C., Sreeram, P. R., Sivaraman, S. K., Sarkar, S., Costin, G., Lahiri, B., Autreto, P. A. da S., & Tiwary, C. S. (2023). Hydrogen Sulfide Gas Detection Using Two-Dimensional Rhodonite Silicate. Chemistry of Materials. https://doi.org/10.1021/acs.chemmater.3c01593

Mahapatra, P. L., de Oliveira, C. C., Costin, G., Sarkar, S., Autreto, P. A. da S., & Tiwary, C. S. (2023). Paramagnetic two-dimensional silicon-oxide from natural silicates. 2D Materials. https://doi.org/10.1088/2053-1583/ad10b9

Aucamp, T., Howarth, G. H., Peel, C. J., Costin, G., Day, J. M. D., le Roux, P., Scott, J. M., Greshake, A., & Bartoschewitz, R. (2023). Petrogenesis of the Dar al Gani (DaG) 1.1 Ma ejection‐paired olivine‐phyric shergottites and implications for ~470 Ma Martian volcanism. Meteoritics & Planetary Science. https://doi.org/10.1111/maps.14090

Marincea, ¸S., Dumitras. D.-G., Sava Ghinet., C., Filiuta, A.E., Dal Bo, F., Hatert, F., Costin, G. (2023). Ammonium-Bearing Fluorapophyllite-(K) in the Magnesian Skarns from Aleului Valley, Pietroasa, Romania. Minerals, 13, 1362. https://doi.org/10.3390/min13111362

Howarth, G. H., Costin, G., Peel, C. J., & Qashani, Z. (2023). Petrology of an apatite-calcite segregationary kimberlite from the Andriesfontein pipe, Kaapvaal craton. Lithos, 458–459, 107341. https://doi.org/10.1016/j.lithos.2023.107341

Mahapatra, P. L., Singh, A. K., Tromer, R., R., K., M., A., Costin, G., Lahiri, B., Kundu, T. K., Ajayan, P. M., Altman, E. I., Galvao, D. S., & Tiwary, C. S. (2023). Energy harvesting using two-dimensional (2D) d-silicates from abundant natural minerals. Journal of Materials Chemistry C. https://doi.org/10.1039/D2TC04605A

Li, Y., Wiedenbeck, M., Monteleone, B., Dasgupta, R., Costin, G., Gao, Z., & Lu, W. (2023). Nitrogen and carbon fractionation in planetary magma oceans and origin of the superchondritic C/N ratio in the bulk silicate Earth. Earth and Planetary Science Letters, 605, 118032. https://doi.org/10.1016/j.epsl.2023.118032

Puthirath Balan, A., Oliveira, E. F., Costin, G., Gray, T., Chakingal, N., Biswas, A., & Puthirath, A. B. (2023). Magneto-structural Phase transition in Exfoliated Pyrrhotite (Fe7S8) Ultra-thin Sheets. Oxford Open Materials Science, 3 (1), itac0920

Latypov, R., Chistyakova, S., Hornsey, R. A. & Costin, G. (2022). OPEN A 5 ‑ km ‑ thick reservoir km 3 of magma within the ancient Earth’s crust. Scientific Reports. Nature Publishing Group UK 1–12.

Lee, C.-T., Sun, C., Sharton-Bierig, E., Phelps, P., Borchardt, J., Liu, B., Costin, G., & Johnston, A. D. (2022). Widespread phosphorous excess in olivine, rapid crystal growth, and implications for magma dynamics. Volcanica, 5(2), 433–450. https://doi.org/10.30909/vol.05.02.433450

Lara, M. & Dasgupta, R. (2023). Effects of H2O-CO2 fluids, temperature, and peridotite fertility on partial melting in mantle wedges and generation of primary arc basalts. Journal of Petrology 64, egad047. doi:10.1093/petrology/egad047

Li, Y., Wiedenbeck, M., Monteleone, B., Dasgupta, R., Costin, G., Gao, Z. & Lu, W. (2023). Nitrogen and carbon fractionation in planetary magma oceans and origin of the superchondritic C/N ratio in the bulk silicate Earth. Earth and Planetary Science Letters 605, 118032. doi:10.1016/j.epsl.2023.118032

Eguchi, J. & Dasgupta, R. (2022). Cycling of CO2 and H2O constrained by experimental investigation of a model ophicarbonate at deep subduction zone conditions. Earth and Planetary Science Letters 600, 117866. doi:10.1016/j.epsl.2022.117866

Grewal, D. S., Sun, T., Aithala, S., Hough, T. Dasgupta, R., Yeung, L. & Schauble, E. (2022). Limited nitrogen isotopic fractionation during core-mantle differentiation in rocky protoplanets and planets. Geochimica et Cosmochimica Acta 338, 347-364. doi:10.1016/j.gca.2022.10.025

Dasgupta, R., Falksen, E., Pal, A. & Sun, C. (2022). The fate of nitrogen during parent body partial melting and accretion of the inner Solar System bodies at reducing conditions. Geochimica et Cosmochimica Acta 336, 291-307. doi:10.1016/j.gca.2022.09.012

Payré, V. & Dasgupta, R. (2022). The effects of phosphorus on partial melting of the martian mantle and compositions of the martian crust. Geochimica et Cosmochimia Acta 327, 229-246. doi:10.1016/j.gca.2022.03.034

Xia, Y., Zhao, X., Xia, C. et al. Highly active and selective oxygen reduction to H2O2 on boron-doped carbon for high production rates. Nat Commun 12, 4225 (2021). https://doi.org/10.1038/s41467-021-24329-9

Viljoen, A, Howarth, G.H., Giuliani, A., Fitzepayne, A, and Costin, G. (2022). Correlations between olivine composition and groundmass mineralogy in Sierra Leone kimberlites provide constraints on craton-specific melt-lithosphere interactions, LITHOS (2022), https://doi.org/10.1016/j.lithos.2022.106846

Michael Lara, Rajdeep Dasgupta (2022). Carbon recycling efficiency in subduction zones constrained by the effects of H2O-CO2 fluids on partial melt compositions in the mantle wedge, Earth and Planetary Science Letters, 588, 117578, https://doi.org/10.1016/j.epsl.2022.117578

Yudovskaya, M. A., Kinnaird, J. A., Costin, G., McCreesh, M., Shilovskikh, V., Kovalchuk, E. & Kuzmin, D. (2022). Formation of Spinel-Orthopyroxene Symplectites by Reactive Melt Flow: Examples from the Northern Bushveld Complex and Implications for Mineralization in Layered Intrusions. Economic Geology.

Chowdhury, P., Dasgupta, R., Phelps, P. R., Costin, G. & Lee, C. T. A. (2022). Oxygen fugacity range of subducting crust inferred from fractionation of trace elements during fluid-present slab melting in the presence of anhydrite versus sulfide. Geochimica et Cosmochimica Acta. Elsevier Ltd 325, 214–231.

Balan, A. P. et al. (2022). Non-van der Waals quasi-2D materials ; recent advances in synthesis, emergent properties and applications. Materials Today. Elsevier Ltd.

Mahapatra, P. L. et al. (2022). Synthesis and Characterization of Biotene: A New 2D Natural Oxide From Biotite. Small 9.

Peter Serles, Taib Arif, Anand B. Puthirath, Shwetank Yadav, Guorui Wang, Teng Cui, Aravind Puthirath Balan, Thakur Prasad Yadav, Prasan Kumar, N. C., Gelu Costin, Chandra Veer Singh, Pulickel M. Ajayan, T. F. (2021). Friction of Magnetene, A Non-van der Waals 2D Material. Science Advances 1, 1–10.

Damanveer S. Grewal, Rajdeep Dasgupta, Sanath Aithala (2021). The effect of carbon concentration on its core-mantle partitioning behavior in inner Solar System rocky bodies, Earth and Planetary Science Letters, 571, 117090, https://doi.org/10.1016/j.epsl.2021.117090

Puthirath, A. B. et al. (2021). Apparent Ferromagnetism in Exfoliated Ultrathin Pyrite Sheets. Journal of Physical Chemistry C 125, 18927–18935.

Jenkins, M. C., Mungall, J. E., Zientek, M. L., Costin, G. & Yao, Z. (2021). Origin of the J-M Reef and lower banded series, stillwater complex, Montana, USA. Precambrian Research. Elsevier B.V. 367, 106457.

Yudovskaya, M.A., Costin, G., Sluzhenikin, S.F. et al. (2021). Hybrid norite and the fate of argillaceous to anhydritic shales assimilated by Bushveld melts. Miner Deposita 56, 73–90. https://doi.org/10.1007/s00126-020-00978-6

Anand B. Puthirath, Aravind Puthirath Balan, Eliezer F. Oliveira, Vishnu Sreepal, Francisco C. Robles Hernandez, Guanhui Gao, Nithya Chakingal, Lucas M. Sassi, Prasankumar Thibeorchews, Gelu Costin, Robert Vajtai, Douglas S. Galvao, Rahul R. Nair, and Pulickel M. Ajayan (2021). Apparent Ferromagnetism in Exfoliated Ultrathin Pyrite Sheets. J. Phys. Chem. C 2021, 125, 34, 18927–1893. https://doi.org/10.1021/acs.jpcc.1c04977

Serles, P., Arif, T., Puthirath, A.B., Yadav, S., Wang, G., Cui, T., Balan, A.P., Yadav, T.P., Prasan Kumar, N. C., Costin, G., Singh, C.V., Ajayan, P.M. (2021). Friction of Magnetene, A Non-van der Waals 2D Material. Science Advances, 1(001), 1–10. DOI: 10.1126/sciadv.abk2041

Moore, A., Costin, G., & Proyer, A. (2021). Cognate versus xenocrystic olivines in kimberlites – A review. Earth-Science Reviews, 103771. https://doi.org/10.1016/j.earscirev.2021.103771

Jenkins, M. C., Mungall, J. E., Zientek, M. L., Costin, G., & Yao, Z. (2021). Origin of the J-M Reef and lower banded series, stillwater complex, Montana, USA. Precambrian Research, 367 (October), 106457. https://doi.org/10.1016/j.precamres.2021.106457

Yudovskaya, M.A., Costin, G., Sluzhenikin, S.F. et al.(2021). Hybrid norite and the fate of argillaceous to anhydritic shales assimilated by Bushveld melts. Mineral Deposita 56, 73–90. https://doi.org/10.1007/s00126-020-00978-6

Puthirath, A.B., Balan, A.P., Oliveira, E.F., Sreepal, V., Robles Hernandez, F.C., Gao, G., Chakingal, N., Sassi, L.M., Thibeorchews, P., Costin, G., Vajtai, R., Galvao, D.S., Nair, R.R., and Ajayan, P.M. (2021). Apparent Ferromagnetism in Exfoliated Ultrathin Pyrite Sheets. The Journal of Physical Chemistry https://doi.org/10.1021/acs.jpcc.1c04977

Tang, M., Lee, C. A., Ji, W., Wang, R. & Costin, G. (2020). Crustal thickening and endogenic oxidation of magmatic sulfur. Science Advances 1–6. DOI: 10.1126/sciadv.aba6342

Latypov, R., Chistyakova, S., Costin, G., Namur, O. & Barnes, S. (2020). Monomineralic anorthosites in layered intrusions are indicators of the magma chamber replenishment by plagioclase-only-saturated melts. Scientific Reports. Springer US 1–14. https://doi.org/10.1038/s41598-020-60778-w

Puthirath, A. B. et al. (2020). Scale-Enhanced Magnetism in Exfoliated Atomically Thin Magnetite Sheets. Small 16, 1–8. https://doi.org/10.1002/smll.202004208

Scoon, R. N., Costin, G., Mitchell, A. & Moine, B. (2020). Non-sequential injection of PGE-rich ultramafic sills in the Platreef Unit at Akanani, Northern Limb of the Bushveld Complex: Evidence from Sr and Nd isotopic systematics. Journal of Petrology, Volume 61, Issue 3, March 2020, https://doi.org/10.1093/petrology/egaa032

Grewal, D. S., Dasgupta, R., & Farnell, A. (2020). The speciation of carbon, nitrogen, and water in magma oceans and its effect on volatile partitioning between major reservoirs of the Solar System rocky bodies. Geochimica et Cosmochimica Acta, 280, 281–301. https://doi.org/10.1016/j.gca.2020.04.023

Ding, S., Dasgupta, R., & Tsuno, K. (2020). The Solidus and Melt Productivity of Nominally Anhydrous Martian Mantle Constrained by New High Pressure-Temperature Experiments—Implications for Crustal Production and Mantle Source Evolution. Journal of Geophysical Research: Planets, 125(4), 0–2. https://doi.org/10.1029/2019JE006078

Moine, B.N., Bolfan-Casanova, N., Radu, I.B. et al. Molecular hydrogen in minerals as a clue to interpret ∂D variations in the mantle. Nat Commun 11, 3604 (2020). https://doi.org/10.1038/s41467-020-17442-8

Lara, M. & Dasgupta, R. (2020) Partial Melting of a Depleted Peridotite Metasomatized by a MORB-Derived Hydrous Silicate Melt–Implications for Subduction Zone Magmatism. Geochimica et Cosmochimica Acta 290: doi:10.1016/j.gca.2020.09.001

Chowdhury, P. & Dasgupta, R. (2020). Sulfur extraction via carbonated melts from sulfide-bearing mantle lithologies – Implications for deep sulfur cycle and mantle redox. Geochimica et Cosmochimica Acta. Elsevier Ltd 269, 376–397.

Yudovskaya, M.A., Costin, G., Sluzhenikin, S.F. et al. (2020). Hybrid norite and the fate of argillaceous to anhydritic shales assimilated by Bushveld melts. Miner Deposita. https://doi.org/10.1007/s00126-020-00978-6

Cao, W., Yang, J., Zuza, A.V., Ji, W.Q., Ma, X.X., Chu, X. and Burgess, Q.P. (2020). Crustal tilting and differential exhumation of Gangdese Batholith in southern Tibet revealed by bedrock pressures. Earth and Planetary Science Letters, 543, p.116347

Yang, M., Frank, T.D., Fielding, C.R., Smith, M.E., Swart, P.K. (2019). Origin of blocky aragonite cement in Cenozoic glaciomarine sediments , McMurdo Sound , Antarctica. Sedimentology, doi: 10.1111/sed.12690

James Eguchi, Johnny Seales, & Rajdeep Dasgupta (2019). Great oxidation and Lomagundi events linked by deep cycling and increased degassing of carbon. Nature Geoscience. https://doi.org/10.1038/s41561-019-0492-6

Swaminathan, J., Puthirath, A. B., Sahoo, M. R., Nayak, S. K., Costin, G., Vajtai, R., Shari, T. & Ajayan, P. M. (2019). Tuning the Electrocatalytic Activity of Co3O4 through discrete elemental doping. ACS Applied Material and Interfaces. https://doi.org/10.1021/acsami.9b06815

Tang, M., Lee, C. A., Costin, G., Höfer, H. E., Geowissenschaften, I. & Goethe-universität, J. W. (2019). Recycling reduced iron at the base of magmatic orogens. Earth and Planetary Science Letters. Elsevier B.V. 528, 115827.

Moya, J. M., Huang, C., Choe, J., Costin, G., Foster, M. S. & Morosan, E. (2019). Effect of synthesis conditions on the electrical resistivity of TiSe 2. Physical Review Materials. American Physical Society 3, 84005.

Costin, G., Götz, A. E. & Ruckwied, K. (2019). Review of Palaeobotany and Palynology Sedimentary organic matter characterization of the Whitehill shales (Karoo Basin, South Africa): An integrated quantitative approach using. Review of Palaeobotany and Palynology. Elsevier B.V. 268, 29–42.

Chowdhury, P. & Dasgupta, R. (2019). Effect of sulfate on the basaltic liquidus and Sulfur Concentration at Anhydrite Saturation (SCAS) of hydrous basalts – Implications for sulfur cycle in subduction zones. Chemical Geology. Elsevier 522, 162–174.

Grewal, D. S., Dasgupta, R., Holmes, A. K., Costin, G., Li, Y. & Tsuno, K. (2019). The fate of nitrogen during core-mantle separation on Earth. Geochimica et Cosmochimica Acta. Elsevier Ltd 251, 87–115.

Grewal, D. S., Dasgupta, R., Sun, C., Tsuno, K. & Costin, G. (2019). Delivery of carbon, nitrogen, and sulfur to the silicate Earth by a giant impact. Science Advances 5, 1–12.

Sun, C. & Dasgupta, R. (2019). Slab-mantle interaction, carbon transport, and kimberlite generation in the deep upper mantle. Earth and Planetary Science Letters 506: 38-52. doi:1016/j.epsl.2018.10.028

Ming Tang, Cin-Ty A. Lee, Kang Chen, Monica Erdman, G. C. & H. J. (2019). Nb/Ta systematics in arc magma differentiation and the role of arclogites in continent formation. Nature Communications 1–8.

Tsuno, K., Grewal, D. S. & Dasgupta, R. (2018). Core-mantle fractionation of carbon on Earth and Mars: the effects of sulfur. Geochimica et Cosmochimica Acta 238, 477-495. doi:10.1016/j.gca.2018.07.010

Carter, L. B. & Dasgupta, R. (2018). Decarbonation in the Ca-Mg-Fe carbonate system at mid-crustal pressure as a function of temperature and assimilation with arc magmas – Implications for long-term climate. Chemical Geology 492, 30-48. doi:10.1016/j.chemgeo.2018.05.024

Eguchi, J. & Dasgupta, R. (2018). A CO2 solubility model for silicate melts from fluid saturation to graphite or diamond saturation. Chemical Geology 487, 23-38. doi:10.1016/j.chemgeo.2018.04.012

Saha, S., Dasgupta, R. & Tsuno, K. (2018). High pressure-temperature phase relations of a depleted peridotite fluxed by CO2-H2O-bearing siliceous melts and the origin of mid-lithospheric discontinuity. Geochemistry, Geophysics, Geosystems 19, 595-620. doi:10.1002/2017GC007233

Ding, S., Hough, T. & Dasgupta, R. (2018). New high pressure experiments on sulfide saturation of high-FeO* basalts with variable TiO2 contents – Implications for the sulfur inventory of the lunar interior. Geochimica et Cosmochimica Acta 222, 319-339. doi:10.1016/j.gca.2017.10.025

Balan, A. P. et al. (2018). Exfoliation of a non-van der Waals material from iron ore hematite. Nature Nanotechnology.

Sharifi, T., Yazdi, S., Costin, G., Apte, A., Coulter, G., Tiwary, C. & Ajayan, P. M. (2018). Impurity controlled crystal growth in low dimensional bismuth telluride. Chemistry of Materialschemmater.8b02548.

Wei, Q., Dai, S., Lefticariu, L. & Costin, G. (2018). Electron probe microanalysis of major and trace elements in coals and their low-temperature ashes from the Wulantuga and Lincang Ge ore deposits, China. Fuel. Elsevier 215, 1–12.

Yadav, T. P. et al. (2018). Chromiteen: A New 2D Oxide Magnetic Material from Natural Ore. Advanced Materials Interfaces 1800549, 1800549.

Yudovskaya, M. A., Sluzhenikin, S. F., Costin, G., Shatagin, K. N., Dubinina, E. O., Grobler, D. F., Ueckermann, H. & Kinnaird, J. A. (2018). Anhydrite assimilation by ultramafic melts of the Bushveld Complex, and its consequences to petrology and mineralization Chapter 9 Anhydrite Assimilation by Ultramafic Melts of the Bushveld Complex, and Its Consequences to Petrology and Mineralization. SEG Special Publications 21, 177–206.

Sharifi, T., Zhang, X., Costin, G., Yazdi, S., Woellner, C. F., Liu, Y., Tiwary, C. S. & Ajayan, P. (2017). Thermoelectricity Enhanced Electrocatalysis. Nano Lettersnanolett.7b04244.

Wu, A., Xie, Y., Ma, H., Tian, C., Gu, Y., Yan, H., Zhang, X., Yang, G. & Fu, H. (2018). Integrating the active OER and HER components as the heterostructures for the efficient overall water splitting. Nano Energy. Elsevier Ltd 44, 353–363.

Jiang, H., Lee, C.-T.A., 2017. Coupled magmatism–erosion in continental arcs: Reconstructing the history of the Cretaceous Peninsular Ranges batholith, southern California through detrital hornblende barometry in forearc sediments. Earth and Planetary Science Letters, 472: 69-81.

Body